Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models

نویسندگان

  • Benjamin M. Marlin
  • Mohammad Emtiyaz Khan
  • Kevin P. Murphy
چکیده

Bernoulli-logistic latent Gaussian models (bLGMs) are a useful model class, but accurate parameter estimation is complicated by the fact that the marginal likelihood contains an intractable logistic-Gaussian integral. In this work, we propose the use of fixed piecewise linear and quadratic upper bounds to the logistic-log-partition (LLP) function as a way of circumventing this intractable integral. We describe a framework for approximately computing minimax optimal piecewise quadratic bounds, as well a generalized expectation maximization algorithm based on using piecewise bounds to estimate bLGMs. We prove a theoretical result relating the maximum error in the LLP bound to the maximum error in the marginal likelihood estimate. Finally, we present empirical results showing that piecewise bounds can be significantly more accurate than previously proposed variational bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stick-Breaking Likelihood for Categorical Data Analysis with Latent Gaussian Models

The development of accurate models and efficient algorithms for the analysis of multivariate categorical data are important and longstanding problems in machine learning and computational statistics. In this paper, we focus on modeling categorical data using Latent Gaussian Models (LGMs). We propose a novel logistic stick-breaking likelihood function for categorical LGMs that can exploit recent...

متن کامل

Geometric Lower Bounds for Distributed Parameter Estimation under Communication Constraints

We consider parameter estimation in distributed networks, where each node in the network observes an independent sample from an underlying distribution and has k bits to communicate its sample to a centralized processor which computes an estimate of a desired parameter of the distribution. We develop lower bounds for the minimax risk of estimating the underlying parameter under squared l2 loss ...

متن کامل

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

The Latent Bernoulli-Gauss Model for Data Analysis

We present a new latent-variable model employing a Gaussian mixture integrated with a feature selection procedure (the Bernoulli part of the model) which together form a ”Latent Bernoulli-Gauss” distribution. The model is applied to MAP estimation, clustering, feature selection and collaborative filtering and fares favorably with the state-of-theart latent-variable models.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011